Advertisement

Role of [18F]-dopa–PET imaging in assessing movement disorders

  • Alan J. Fischman
    Correspondence
    Division of Nuclear Medicine, Department of Radiology, Massachusetts General Hospital, 32 Fruit Street, Boston, MA 02114
    Affiliations
    Division of Nuclear Medicine, Department of Radiology, Massachusetts General Hospital, 32 Fruit Street, Boston, MA 02114, USA

    Department of Radiology, Harvard Medical School, Boston, MA, USA
    Search for articles by this author
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Radiologic Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kish S.J.
        • Shannak K.
        • Hornykiewicz O.
        Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease.
        N Engl J Med. 1988; 318: 876-880
        • Madras B.K.
        • Spealman R.D.
        • Fahey M.A.
        • Neumeyer J.L.
        • Saha J.K.
        • Milius R.A.
        Cocaine receptors labeled by [3H] 2 beta-carbomethoxy-3 beta-(4-fluorophenyl)tropane.
        Mol Pharmacol. 1989; 36: 518-524
        • Madras B.K.
        • Fahey M.A.
        • Kaufman M.J.
        [3H] CFT and [3H] LU 19–005: markers for cocaine receptor/dopamine nerve terminals in Parkinson's disease [abstract].
        Soc Neurosci Abstr. 1990; 16: 14
        • Kaufman M.J.
        • Madras B.K.
        Severe depletion of cocaine recognition sites associated with the dopamine transporter in Parkinson's diseased striatum.
        Synapse. 1991; 9: 43-49
        • Parkinson's Study Group
        Effects of tocopherol and deprenyl on the progression of disability in early Parkinson's disease.
        N Engl J Med. 1993; 328: 176-183
        • Freed C.R.
        • Breeze R.E.
        • Schneck S.A.
        Transplantation of fetal mesencephalic tissue in Parkinson's disease.
        N Engl J Med. 1995; 333: 730-731
        • Iacono R.P.
        • Shima F.
        • Lonser R.R.
        • Kuniyoshi S.
        • Maeda G.
        • Yamada S.
        The results, indications, and physiology of posteroventral pallidotomy for patients with Parkinson's disease.
        Neurosurgery. 1995; 36: 1118-1125
        • Laitinen L.V.
        Pallidotomy for Parkinson's disease.
        Neurosurg Clin N Am. 1995; 6: 105-112
        • Kuhl D.E.
        • Metter E.J.
        • Riege W.H.
        Patterns of local cerebral glucose utilization determined in Parkinson's disease by the [18F] fluorodeoxyglucose method.
        Ann Neurol. 1984; 15: 419-424
        • Smith F.W.
        • Gemmell H.G.
        • Sharp P.F.
        • Besson J.A.
        Technetium-99m HMPAO imaging in patients with basal ganglia disease.
        Br J Radiol. 1988; 61: 914-920
        • Leenders K.L.
        • Salmon E.P.
        • Tyrrell P.
        • Perani D.
        • Brooks D.J.
        • Sager H.
        • et al.
        The nigrostriatal dopaminergic system assessed in vivo by positron emission tomography in healthy volunteer subjects and patients with Parkinson's disease.
        Arch Neurol. 1990; 47: 1290-1298
        • Adam M.J.
        • Jivan S.
        Synthesis and purification of L-[18F] 6-fluorodopa.
        Appl Radiat Isot. 1988; 39: 1203-1206
        • Huang S.C.
        • Yu D.C.
        • Barrio J.R.
        • Grafton S.
        • Melega W.P.
        • Hoffman J.M.
        • et al.
        Kinetics and modeling of L-6-[18F]fluoro-dopa in human positron emission tomographic studies.
        J Cereb Blood Flow Metab. 1991; 11: 898-913
        • Wahl L.
        • Nahmias C.
        Modeling of fluorine-18–6-fluoro-l-dopa in humans.
        J Nucl Med. 1996; 37: 432-437
        • Patlak C.S.
        • Blasberg R.G.
        Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data: generalizations.
        J Cereb Blood Flow Metab. 1985; 5: 584-590
        • Martin W.R.W.
        • Palmer M.R.
        • Patlak C.S.
        • Calne D.B.
        Nigrostriatal function in man studied with positron emission tomography.
        Ann Neurol. 1989; 26: 535-542
        • Takikawa S.
        • Dhawan V.
        • Chaly T.
        • Robeson W.
        • Dahl R.
        • Zanzi I.
        • et al.
        Input functions for 6-[fluorine-18] fluorodopa quantitation in parkinsonism: comparative studies and clinical correlations.
        J Nucl Med. 1994; 35: 955-963
        • Vingerhoets F.J.
        • Schulzer M.
        • Ruth T.J.
        • Holden J.E.
        • Snow B.J.
        Reproducibility and discriminating ability of fluorine-18–6-fluoro-l-dopa PET in Parkinson's disease.
        J Nucl Med. 1996; 37: 421-426
        • Morrish P.K.
        • Rakshi J.S.
        • Bailey D.L.
        • Sawle G.V.
        • Brooks D.J.
        Measuring the rate of progression and estimating the preclinical period of Parkinson's disease with [18F] dopa PET.
        J Neurol Neurosurg Psychiatry. 1998; 64: 314-319
        • Hoshi H.
        • Kuwabara H.
        • Leger G.
        • Cumming P.
        • Guttman M.
        • Gjedde A.
        6-[18F] fluoro-l-dopa metabolism in living human brain: a comparison of six analytical methods.
        J Cereb Blood Flow Metab. 1993; 13: 57-69
        • Dhawan V.
        • Ma Y.
        • Pillai V.
        • Spetsieris P.
        • Chaly T.
        • Belakhlkef A.
        • et al.
        Comparative analysis of striatal Fdopa uptake in Parkinson's disease: ratio method versus graphical analysis.
        J Nucl Med. 2002; 43: 1324-1330
        • Kuwabara H.
        • Cumming P.
        • Reith J.
        • Leger G.
        • Diksic M.
        • Evans A.C.
        • et al.
        Human striatal l-dopa decarboxylase activity estimated in vivo using 6-[18F]fluoro-dopa and positron emission tomography: error analysis and application to normal subjects.
        J Cereb Blood Flow Metab. 1993; 13: 43-56
        • Pate B.D.
        • Kawamata T.
        • Yamada T.
        • McGeer E.G.
        • Hewitt K.A.
        • Snow B.J.
        • et al.
        Correlation of striatal fluorodopa uptake in the MPTP-monkey with dopaminergic indices.
        Ann Neurol. 1993; 34: 331-338
        • Snow B.J.
        • Tooyama I.
        • McGeer E.G.
        • Yamada T.
        • Calne D.B.
        • Takahashi H.
        • et al.
        Correlations in humans between premortem PET [18F] fluorodopa uptake, postmortem cell counts and striatal dopamine levels.
        Ann Neurol. 1993; 34: 324-330
        • Morrish P.K.
        • Sawle G.V.
        • Brooks D.J.
        Regional changes in [18F]dopa metabolism in the striatum in Parkinson's disease.
        Brain. 1996; 119: 2097-2103
        • DeJesus O.T.
        • Endres C.J.
        • Shelton S.E.
        • Nickles R.J.
        • Holden J.E.
        Evaluation of fluorinated m-tyrosine analogs as PET imaging agents of dopamine nerve terminals: comparison with 6-fluorodopa.
        J Nucl Med. 1998; 38: 630-636
        • Nakamura T.
        • Dhawan V.
        • Chaly T.
        • Fukuda M.
        • Ma Y.
        • Breeze R.
        • et al.
        Blinded positron emission tomography study of dopamine cell implantation in Parkinson's disease.
        Ann Neurol. 2001; 50: 181-187
        • Hoffman J.M.
        • Melaga W.P.
        • Hawk T.C.
        • Grafton S.C.
        • Luxen A.
        • Mahoney D.K.
        • et al.
        The effect of carbidopa administration on 6-[18F] fluoro-l-dopa kinetics in positron emission tomography.
        J Nucl Med. 1992; 33: 1472-1477
        • Wahl L.
        • Chirakal R.
        • Firnau G.
        • Garnett E.S.
        • Nahmias C.
        The distribution and kinetics of [18F]6-fluoro-3-O-methyl-l-dopa in the human brain.
        J Cereb Blood Flow Metab. 1994; 14: 664-670
        • Moore R.Y.
        • Whone A.L.
        • McGowan S.
        • Brooks D.J.
        Monoamine neuron innervation of the normal human brain: an 18F-dopa PET study.
        Brain Res. 2003; 982: 137-145
        • Garnett E.S.
        • Nahmias C.
        • Firnau G.
        Central dopaminergic pathways in hemiparkinsonism examined by positron emission tomography.
        Can J Neurol Sci. 1984; 11: 174-179
        • Nahmias C.
        • Garnett E.S.
        • Firnau G.
        • Lang A.
        Striatal dopamine distribution in parkinsonian patients during life.
        J Neurol Sci. 1985; 69: 223-230
        • Leenders K.L.
        • Palmer A.J.
        • Quinn N.
        • Clark J.C.
        • Firnau G.
        • Garnett E.S.
        • et al.
        Brain dopamine metabolism in patients with Parkinson's disease measured with positron emission tomography.
        J Neurol Neurosurg Psychiatry. 1986; 49: 853-860
        • Brooks D.J.
        • Ibanez V.
        • Sawle G.V.
        • Quinn N.
        • Lees A.J.
        • Mathias C.J.
        • et al.
        Differing patterns of striatal 18F-dopa uptake in Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy.
        Ann Neurol. 1990; 28: 547-555
        • Martin W.R.W.
        • Adam M.J.
        • Bergstrom M.
        • Ammann W.
        • Harrop R.
        • Laihinen A.O.
        • et al.
        In vivo study of dopa metabolism in Parkinson's disease.
        in: Fajn S. Jenner P. Marsden C.D. Teychenne P.F. Recent developments in Parkinson's disease. Raven Press, New York1986: 97-102
        • Otsuka M.
        • Ichiya Y.
        • Hosokawa S.
        • Kuwabara Y.
        • Tahara T.
        • Fukumura T.
        • et al.
        Striatal blood flow, glucose metabolism and 18F-dopa uptake: difference in Parkinson's disease and atypical parkinsonism.
        J Neurol Neurosurg Psychiatry. 1991; 54: 898-904
        • Goto S.
        • Hirano A.
        • Matsumoto S.
        Subdivisional involvement of nigrostriatal loop in idiopathic Parkinson's disease and striatonigral degeneration.
        Ann Neurol. 1989; 26: 766-770
        • German D.C.
        • Manaye K.
        • Smith W.K.
        • Woodward D.J.
        • Saper C.B.
        Midbrain dopaminergic cell loss in Parkinson's disease: computer visualization.
        Ann Neurol. 1989; 26: 507-514
        • Bernheimer H.
        • Birkmayer W.
        • Hornykiewicz O.
        • Jellinger K.
        • Seitelberger F.
        Brain dopamine and the syndromes of Parkinson and Huntington: clinical, morphological and neurochemical correlations.
        J Neurol Sci. 1973; 20: 415-455
        • Vingerhoets F.J.
        • Snow B.J.
        • Schulzer M.
        • Morrison S.
        • Ruth T.J.
        • Holden J.E.
        • et al.
        Reproducibility of fluorine-18–6-fluorodopa positron emission tomography in normal human subjects.
        J Nucl Med. 1994; 35: 18-24
        • Vingerhoets F.J.
        • Schulzer M.
        • Ruth T.J.
        • Holden J.E.
        • Snow B.J.
        Reproducibility and discriminating ability of fluorine-18–6-fluoro-l-dopa PET in Parkinson's disease.
        J Nucl Med. 1996; 37: 421-426
        • Sawle G.V.
        • Colebatch J.G.
        • Shah A.
        • Brooks D.J.
        • Marsden C.D.
        • Frackowiak R.S.
        Striatal function in normal aging: implications for Parkinson's disease.
        Ann Neurol. 1990; 28: 799-804
        • Eidelberg D.
        • Takikawa S.
        • Dhawan V.
        • Chaly T.
        • Robeson W.
        • Dahl R.
        • et al.
        Striatal 18F-dopa uptake: absence of an aging effect.
        J Cereb Blood Flow Metab. 1993; 13: 881-888
        • Vingerhoets F.J.
        • Snow B.J.
        • Tetrud J.W.
        • Langston J.W.
        • Schulzer M.
        • Calne D.B.
        Positron emission tomographic evidence for progression of human MPTP- induced dopaminergic lesions.
        Ann Neurol. 1994; 36: 765-770
        • Ceravolo R.
        • Piccini P.
        • Bailey D.L.
        • Jorga K.M.
        • Bryson H.
        • Brooks D.J.
        18F-dopa PET evidence that tolcapone acts as a central COMT inhibitor in Parkinson's disease.
        Synapse. 2002; 43: 201-207
        • Morrish P.K.
        • Sawle G.V.
        • Brooks D.J.
        An [18F] dopa PET and clinical study of the rate of progression of Parkinson's disease.
        Brain. 1996; 119: 585-591
        • Morrish P.K.
        • Rakshi J.S.
        • Sawle G.V.
        • Brooks D.J.
        Measuring the rate of progression and estimating the preclinical period of Parkinson's disease with [18F] dopa PET.
        Neurol Neurosurg Psychiatry. 1998; 64: 314-319
        • Nurmi E.
        • Ruottinen H.M.
        • Bergman J.
        • Haaparanta M.
        • Solin O.
        • Sonninen P.
        • et al.
        Rate of progression in Parkinson's disease: a [18F] fluoro-l-dopa pet study.
        mov disord. 2001; 16: 608-615
        • Fearnley J.M.
        • Lees A.J.
        Ageing and Parkinson's disease: substantia nigra regional selectivity.
        Brain. 1991; 114: 2283-2301
        • Golbe L.J.
        The genetics of Parkinson's disease: a reconsideration.
        Neurology. 1990; 40: 7-16
        • Calne D.B.
        • Langston J.W.
        • Martin W.R.
        • Stoessl A.J.
        • Ruth T.J.
        • Adam M.J.
        • et al.
        Positron emission tomography after MPTP: observations relating to the cause of Parkinson's disease.
        Nature. 1985; 317: 246-248
        • Sawle G.V.
        • Wroe S.J.
        • Lees A.J.
        • Brooks D.J.
        • Frackowiak R.S.
        The identification of presymptomatic parkinsonism: clinical and [18F]dopa positron emission tomography studies in an Irish kindred.
        Ann Neurol. 1992; 32: 609-617
        • Piccini P.
        • Morrish P.K.
        • Turjanski N.
        • Sawle G.V.
        • Burn D.J.
        • Weeks R.A.
        • et al.
        Dopaminergic function in familial Parkinson's disease: a clinical and 18F-dopa positron emission tomography study.
        Ann Neurol. 1997; 41: 222-229
        • Khan N.L.
        • Brooks D.J.
        • Pavese N.
        • Sweeney M.G.
        • Wood N.W.
        • Lees A.J.
        • et al.
        Progression of nigrostriatal dysfunction in a parkin kindred: an [18F]dopa PET and clinical study.
        Brain. 2002; 125: 2248-2256
        • Burn D.J.
        • Mark M.H.
        • Playford E.D.
        • Maraganore D.M.
        • Zimmerman T.R.
        • Duvoisin R.C.
        • et al.
        Parkinson's disease in twins studied with 18F-dopa and positron emission tomography.
        Neurology. 1992; 42: 1894-1900
        • Alexander T.
        • Sortwell C.E.
        • Sladek C.D.
        • Roth R.H.
        • Steece-Collier K.
        Comparison of neurotoxicity following repeated administration of l-dopa, d-dopa and dopamine to embryonic mesencephalic dopamine neurons in cultures derived from Fisher 344 and Sprague-Dawley donors.
        Cell Transplant. 1997; 6: 309-315
        • Iida M.
        • Miyazaki I.
        • Tanaka K.
        • Kabuto H.
        • Iwata-Ichikawa E.
        • Ogawa N.
        Dopamine D2 receptor-mediated antioxidant and neuroprotective effects of ropinirole, a dopamine agonist.
        Brain Res. 1999; 838: 51-59
        • Olanow C.W.
        • Jenner P.
        • Brooks D.
        Dopamine agonists and neuroprotection in Parkinson's disease.
        Ann Neurol. 1998; 44: 167-174
        • Whone A.L.
        • Watts R.L.
        • Stoessl A.J.
        • Davis M.
        • Reske S.
        • Nahmias C.
        • et al.
        Slower progression of Parkinson's disease with ropinirole versus levodopa: the REAL-PET study.
        Ann Neurol. 2003; 54: 93-101
        • Parkinson Study Group
        Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopas on Parkinson disease progression.
        JAMA. 2002; 287: 1653-1661
        • Lindvall O.
        • Backlund E.O.
        • Farde L.
        • Sedvall G.
        • Freedman R.
        • Hoffer B.
        • et al.
        Transplantation in Parkinson's disease: two cases of adrenal medullary grafts to the putamen.
        Ann Neurol. 1987; 22: 457-468
        • Lindvall O.
        • Brundin P.
        • Widner H.
        • Rehncrona S.
        • Gustavii B.
        • Frackowiak R.
        • et al.
        Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease.
        Science. 1990; 247: 574-577
        • Freed C.R.
        • Breeze R.E.
        • Rosenberg N.L.
        • Schneck S.A.
        • Kriek E.
        • Qi J.X.
        • et al.
        Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson's disease.
        N Engl J Med. 1992; 327: 1549-1555
        • Peschanski M.
        • Defer G.
        • N'Guyen J.P.
        • Ricolfi F.
        • Monfort J.C.
        • Remy P.
        • et al.
        Bilateral motor improvement and alteration of l-dopa effect in two patients with Parkinson's disease following intrastriatal transplantation of foetal ventral mesencephalon.
        brain. 1994; 117: 487-499
        • Spencer D.D.
        • Robbins R.J.
        • Naftolin F.
        • Marek K.L.
        • Vollmer T.
        • Leranth C.
        • et al.
        Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson's disease.
        N Engl J Med. 1992; 327: 1541-1548
        • Widner H.
        • Tetrud J.
        • Rehncrona S.
        • Snow B.
        • Brundin P.
        • Gustavii B.
        • et al.
        Bilateral fetal mesencephalic grafting in two patients with parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).
        N Engl J Med. 1992; 327: 1556-1563
        • Freed C.R.
        • Greene P.E.
        • Breeze R.E.
        • Tsai W.Y.
        • DuMouchel W.
        • Kao R.
        • et al.
        Transplantation of embryonic dopamine neurons for severe Parkinson's disease.
        N Engl J Med. 2001; 344: 710-719
        • Nakamura T.
        • Dhawan V.
        • Chaly T.
        • Fukuda M.
        • Ma Y.
        • Breeze R.
        • et al.
        Blinded positron emission tomography study of dopamine cell implantation for Parkinson's disease.
        Ann Neurol. 2001; 50: 181-187
        • Ding Y.S.
        • Fowler J.S.
        • Volkow N.D.
        • Logan J.
        • Gatley S.J.
        • Sugano Y.
        Carbon-11-d-threo-methylphenidate binding to dopamine transporter in baboon brain.
        J Nucl Med. 1995; 36: 2298-2305
        • Kazumata K.
        • Dhawan V.
        • Chaly T.
        • Antonini A.
        • Margouleff C.
        • Belakhlef A.
        • et al.
        Dopamine transporter imaging with fluorine-18-FPCIT and PET.
        J Nucl Med. 1998; 39: 1521-1530
        • Fischman A.J.
        • Bonab A.A.
        • Babich J.W.
        • Livni E.
        • Alpert N.M.
        • Meltzer P.C.
        • et al.
        [(11)C, (127)I] Altropane: a highly selective ligand for PET imaging of dopamine transporter sites.
        Synapse. 2001; 39: 332-342
        • Frey K.A.
        • Koeppe R.A.
        • Kilbourn M.R.
        • Vander Borght T.M.
        • Albin R.L.
        • Gilman S.
        • et al.
        Presynaptic monoaminergic vesicles in Parkinson's disease and normal aging.
        Ann Neurol. 1996; 40: 873-884
        • Gilman S.
        • Frey K.A.
        • Koeppe R.A.
        • Junck L.
        • Little R.
        • Vander Borght T.M.
        • et al.
        Decreased striatal monoaminergic terminals in olivopontocerebellar atrophy and multiple system atrophy demonstrated with positron emission tomography.
        Ann Neurol. 1996; 40: 885-892
        • Lee C.S.
        • Samii A.
        • Sossi V.
        • Ruth T.J.
        • Schulzer M.
        • Holden J.E.
        • et al.
        In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson's disease.
        Ann Neurol. 2000; 47: 493-503
        • Fearnley J.M.
        • Lees A.J.
        Striatonigral degeneration: a clinicopathological study.
        Brain. 1990; 113: 1823-1842
        • Rajput A.H.
        • Rozdilsky B.
        • Rajput A.
        Accuracy of clinical diagnosis in parkinsonism: a prospective study.
        Can J Neurol Sci. 1991; 18: 275-278
        • Hughes A.J.
        • Daniel S.E.
        • Kilford L.
        • Lees A.J.
        Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases.
        J Neurol Neurosurg Psychiatry. 1992; 55: 181-184
        • Burn D.J.
        • Sawle G.V.
        • Brooks D.J.
        Differential diagnosis of Parkinson's disease, multiple system atrophy, and Steele-Richardson-Olszewski syndrome: discriminant analysis of striatal 18F-dopa PET data.
        J Neurol Neurosurg Psychiatry. 1994; 57: 278-284
        • De Volder A.G.
        • Francart J.
        • Laterre C.
        • Dooms G.
        • Bol A.
        • Michel C.
        • et al.
        Decreased glucose utilization in the striatum and frontal lobe in probable striatonigral degeneration.
        Ann Neurol. 1989; 26: 239-247
        • Kuhl D.E.
        • Metter E.J.
        • Riege W.H.
        Patterns of local cerebral glucose utilization determined in Parkinson's disease by the [18F]fluorodeoxyglucose method.
        Ann Neurol. 1984; 15: 419-424
        • Wolfson L.I.
        • Leenders K.L.
        • Brown L.L.
        • Jones T.
        Alterations of regional cerebral blood flow and oxygen metabolism in Parkinson's disease.
        Neurology. 1985; 35: 1399-1405
        • Burn D.J.
        • Rinne J.O.
        • Quinn N.P.
        • Lees A.J.
        • Marsden C.D.
        • Brooks D.J.
        Striatal opioid receptor binding in Parkinson's disease, striatonigral degeneration and Steele-Richardson-Olszewski syndrome: a [11C]diprenorphine PET study.
        Brain. 1995; 118: 951-958
        • Jellinger K.
        • Riederer P.
        • Tomonaga M.
        Progressive supranuclear palsy: clinico-pathological and biochemical studies.
        J Neural Transm Suppl. 1980; 16: 111-128
        • Bokobza B.
        • Ruberg M.
        • Scatton B.
        • Javoy-Agid F.
        • Agid Y.
        [3H]spiperone binding, dopamine and HVA concentrations in Parkinson's disease and supranuclear palsy.
        Eur J Pharmacol. 1984; 99: 167-175
        • Ruberg M.
        • Bokobza B.
        • Javoy-Agid F.
        • Montfort J.C.
        • Agid Y.
        [3H]spiperone binding in the nigrostriatal system in human brain.
        Eur J Pharmacol. 1984; 99: 159-165
        • Kish S.J.
        • Chang L.J.
        • Mirchandani L.
        • Shannak K.
        • Hornykiewicz O.
        Progressive supranuclear palsy: relationship between extrapyramidal disturbances, dementia, and brain neurotransmitter markers.
        Ann Neurol. 1985; 18: 530-536
        • Piccini P.
        • de Yebenez J.
        • Lees A.J.
        • Ceravolo R.
        • Turjanski N.
        • Pramstaller P.
        • et al.
        Familial progressive supranuclear palsy: detection of subclinical cases using 18F-dopa and 18fluorodeoxyglucose positron emission tomography.
        Arch Neurol. 2001; 58: 1846-1851
        • D'Antona R.
        • Baron J.C.
        • Samson Y.
        • Serdaru M.
        • Viader F.
        • Agid Y.
        • et al.
        Subcortical dementia: frontal cortex hypometabolism detected by positron tomography in patients with progressive supranuclear palsy.
        Brain. 1985; 108: 785-799
        • Leenders K.L.
        • Frackowiak R.S.
        • Lees A.J.
        Steele-Richardson-Olszewski syndrome: brain energy metabolism, blood flow and fluorodopa uptake measured by positron emission tomography.
        Brain. 1988; 111: 615-630
        • Foster N.L.
        • Gilman S.
        • Berent S.
        • Morin E.M.
        • Brown M.B.
        • Koeppe R.A.
        Cerebral hypometabolism in progressive supranuclear palsy studied with positron emission tomography.
        Ann Neurol. 1988; 24: 399-406
        • Goffinet A.M.
        • De Volder A.G.
        • Gillain C.
        • Rectem D.
        • Bol A.
        • Michel C.
        • et al.
        Positron tomography demonstrates frontal lobe hypometabolism in progressive supranuclear palsy.
        Ann Neurol. 1989; 25: 131-139
        • Blin J.
        • Baron J.C.
        • Dubois B.
        • Pillon B.
        • Cambon H.
        • Cambier J.
        • et al.
        Positron emission tomography study in progressive supranuclear palsy: brain hypometabolic pattern and clinicometabolic correlations.
        Arch Neurol. 1990; 47: 747-752
        • Sawle G.V.
        • Brooks D.J.
        • Marsden C.D.
        • Frackowiak R.S.
        Corticobasal degeneration: a unique pattern of regional cortical oxygen hypometabolism and striatal fluorodopa uptake demonstrated by positron emission tomography.
        Brain. 1991; 114: 541-556
        • Eidelberg D.
        • Dhawan V.
        • Moeller J.R.
        • Sidtis J.J.
        • Ginos J.Z.
        • Strother S.C.
        • et al.
        The metabolic landscape of cortico-basal ganglionic degeneration: regional asymmetries studied with positron emission tomography.
        J Neurol Neurosurg Psychiatry. 1991; 54: 856-862
        • Nagasawa H.
        • Tanji H.
        • Nomura H.
        • Saito H.
        • Itoyama Y.
        • Kimura I.
        • et al.
        PET study of cerebral glucose metabolism and fluorodopa uptake in patients with corticobasal degeneration.
        J Neurol Sci. 1996; 139: 210-217
        • Sawle G.V.
        • Leenders K.L.
        • Brooks D.J.
        • Harwood G.
        • Lees A.J.
        • Frackowiak R.S.
        • et al.
        Dopa-responsive dystonia: [18F]dopa positron emission tomography.
        Ann Neurol. 1991; 30: 24-30
        • Wolters S.C.
        • Huang C.C.
        • Clark C.
        • Peppard R.F.
        • Okada J.
        • Chu N.S.
        • et al.
        Positron emission tomography in manganese intoxication.
        Ann Neurol. 1989; 26: 647-651
        • Kuhl D.E.
        • Metter E.J.
        • Riege W.H.
        • Markham C.H.
        Patterns of local cerebral glucose utilization in Parkinson's disease and Huntington's disease.
        Ann Neurol. 1984; 15: 119-125
        • Leenders K.L.
        • Frackowiak R.S.
        • Quinn N.
        • Marsden C.D.
        Brain energy metabolism and dopaminergic function in Huntington's disease measured in vivo using positron emission tomography.
        Mov Disord. 1986; 1: 69-77
        • Young A.B.
        • Penney J.B.
        • Starosta-Rubinstein S.
        • Markel D.S.
        • Berent S.
        • Giordani B.
        • et al.
        PET scan investigations of Huntington's disease: cerebral metabolic correlates of neurological features and functional decline.
        Ann Neurol. 1986; 20: 296-303
        • Hagglund J.
        • Aquilonius S.M.
        • Eckernas S.A.
        • Hartvig P.
        • Lundquist H.
        • Gullberg P.
        • et al.
        Dopamine receptor properties in Parkinson's disease and Huntington's chorea evaluated by positron emission tomography using 11C-N-methyl-spiperone.
        Acta Neurol Scand. 1987; 75: 87-94
        • Albin R.L.
        • Reiner A.
        • Anderson K.D.
        • Penney J.B.
        • Young A.B.
        Striatal and nigral neuron subpopulations in rigid Huntington's disease: implications for the functional anatomy of chorea and rigidity-akinesia.
        Ann Neurol. 1990; 27: 357-365
        • Grafton S.T.
        • Mazziotta J.C.
        • Pahl J.J.
        • St. George-Hyslop P.
        • Haines J.L.
        • Gusella J.
        • et al.
        A comparison of neurological, metabolic, structural, and genetic evaluations in persons at risk for Huntington's disease.
        Ann Neurol. 1990; 28: 614-621