Breast Cancer Risk Assessment Models and High-Risk Screening

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Radiologic Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Saadatmand S.
        • Bretveld R.
        • Siesling S.
        • et al.
        Influence of tumour stage at breast cancer detection on survival in modern times: population based study in 173,797 patients.
        BMJ. 2015; 351: h4901
        • Saslow D.
        • Boetes C.
        • Burke W.
        • et al.
        American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography.
        CA Cancer J Clin. 2007; 57: 75-89
        • Berg W.A.
        • Zhang Z.
        • Lehrer D.
        • et al.
        Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammography in women with elevated breast cancer risk.
        JAMA. 2012; 307: 1394-1404
      1. National Comprehensive Cancer Network. Genetic/familial high-risk assessment: breast and ovarian (version 1.207). Available at: https://www.nccn.org/professionals/physician_gls/pdf/genetics_screening.pdf. Accessed September 20, 2016.

        • Moyer V.A.
        Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: U.S. Preventive Services Task Force recommendation statement.
        Ann Intern Med. 2014; 160: 271-281
      2. FORCE Web site. Available at: http://www.facingourrisk.org/understanding-brca-and-hboc/information/hereditary-cancer/hereditary-genetics/basics/signs-of-hereditary-breast-and-ovarian-cancer.php. Accessed September 20, 2016.

        • Frank T.S.
        • Deffenbaugh A.M.
        • Reid J.E.
        • et al.
        Clinical characteristics of individuals with germline mutations in BRCA1 and BRCA2: analysis of 10,000 individuals.
        J Clin Oncol. 2002; 20 (Available at:): 1480-1490
        • Claus E.B.
        Risk models used to counsel women for breast and ovarian cancer: a guide for clinicians.
        Fam Cancer. 2001; 1: 197-206
        • Plon S.E.
        • Cooper H.P.
        • Parks B.
        • et al.
        Genetic testing and cancer risk management recommendations by physicians for at-risk relatives.
        Genet Med. 2011; 13: 148-154
        • Gilpin C.A.
        • Carson N.
        • Hunter A.G.
        A preliminary validation of a family history assessment form to select women at risk for breast or ovarian cancer for referral to a genetic center.
        Clin Genet. 2000; 58: 299-308
        • Evans D.G.
        • Eccles D.M.
        • Rahman N.
        • et al.
        A new scoring system for the chances of identifying a BRCA1/2 mutation outperforms existing models including BRCAPRO.
        J Med Genet. 2004; 41: 474-480
        • Bellcross C.A.
        • Lemke A.A.
        • Pape L.S.
        • et al.
        Evaluation of a breast/ovarian cancer genetics referral screening tool in a mammography population.
        Genet Med. 2009; 11: 783-789
        • Bellcross C.A.
        Further development and evaluation of a breast/ovarian cancer genetics referral screening tool.
        Genet Med. 2010; 12: 240
        • Hoskins K.F.
        • Zwaagstra A.
        • Ranz M.
        Validation of a tool for identifying women at high risk for hereditary breast cancer in population-based screening.
        Cancer. 2006; 107: 1769-1776
        • Ashton-Prolla P.
        • Giacomazzi J.
        • Schmidt A.V.
        • et al.
        Development and validation of a simple questionnaire for the identification of hereditary breast cancer in primary care.
        BMC Cancer. 2009; 9: 283
        • Travis L.B.
        • Hill D.
        • Dores G.M.
        • et al.
        Cumulative absolute breast cancer risk for young women treated for Hodgkin lymphoma.
        J Natl Cancer Inst. 2005; 97: 1428-1437
        • American Cancer Society
        Breast Cancer Facts & Figures 2015-2016.
        American Cancer Society, Inc, Atlanta2012
        • Sickles E.A.
        • D'Orsi C.J.
        • Bassett L.W.
        • et al.
        ACR BI-RADS® Mammography.
        in: ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System. American College of Radiology, Reston (VA)2013
        • Gail M.H.
        • Brinton L.A.
        • Byar D.P.
        • et al.
        Projecting individualized probabilities of developing breast cancer for white females who are being examined annually.
        J Natl Cancer Inst. 1989; 81: 1879-1886
        • Costantino J.P.
        • Gail M.H.
        • Pee D.
        • et al.
        Validation studies for models projecting the risk of invasive and total breast cancer incidence.
        J Natl Cancer Inst. 1999; 91: 1541-1548
        • Amir E.
        • Evans D.G.
        • Shenton A.
        • et al.
        Evaluation of breast cancer risk assessment packages in the family history evaluation and screening programme.
        J Med Genet. 2003; 40: 807-814
        • Spiegelman D.
        • Colditz G.A.
        • Hunter D.
        • et al.
        Validation of the Gail et al. model for predicting individual breast cancer risk.
        J Natl Cancer Inst. 1994; 86: 600-607
        • Bondy M.L.
        • Lustbader E.D.
        • Halabi S.
        • et al.
        Validation of a breast cancer risk assessment model in women with a positive family history.
        J Natl Cancer Inst. 1994; 86: 620-625
        • Rockhill B.
        • Spiegelman D.
        • Byrne C.
        • et al.
        Validation of the Gail et al. model of breast cancer risk prediction and implications of chemoprevention.
        J Natl Cancer Inst. 2001; 7: 358-366
        • Claus E.B.
        • Risch N.
        • Thompson W.D.
        Autosomal dominant inheritance of early onset breast cancer: implications for risk prediction.
        Cancer. 1994; 73: 643-651
        • Claus E.B.
        • Risch N.
        • Thompson W.D.
        The calculation of breast cancer risk for women with a first degree family history of ovarian cancer.
        Breast Cancer Res Treat. 1993; 28: 115-120
        • Amir E.
        • Orit C.
        • Freedman O.C.
        • et al.
        Assessing women at high risk of breast cancer: a review of risk assessment models.
        J Natl Cancer Inst. 2010; 102: 680-691
        • Jemal A.
        • Siegel R.
        • Ward E.
        • et al.
        Cancer statistics, 2008.
        CA Cancer J Clin. 2008; 58: 71-96
        • Parkin D.M.
        • Bray F.
        • Ferlay J.
        • et al.
        Global cancer statistics, 2002.
        CA Cancer J Clin. 2005; 55: 74-108
        • Tischkowitz M.
        • Wheeler D.
        • France E.
        • et al.
        A comparison of methods currently used in clinical practice to estimate familial breast cancer risks.
        Ann Oncol. 2000; 11: 451-454
        • Ozanne E.M.
        • Drohan B.
        • Bosinoff P.
        • et al.
        Which risk model to use? Clinical implications of the ACS MRI screening guidelines.
        Cancer Epidemiol Biomarkers Pred. 2013; 22: 146-149
        • Boughey J.C.
        • Hartmann L.C.
        • Anderson S.S.
        • et al.
        Evaluation of the Tyrer-Cuzick (International Breast Cancer Intervention Study) model for breast cancer risk predication in women with atypical hyperplasia.
        J Clin Oncol. 2010; 28: 3591-3596
        • Rosner B.
        • Colditz G.A.
        Nurses’ health study: log-incidence mathematical model of breast cancer incidence.
        J Natl Cancer Inst. 1996; 88: 359-364
        • Shannon K.M.
        • Lubratovish M.L.
        • Finkelstein D.M.
        • et al.
        Model-based predictions of BRCA1/2 mutation status in breast carcinoma patients treated at an academic medical center.
        Cancer. 2002; 94: 305-313
        • Berry D.A.
        • Iverson Jr., E.S.
        • Gudbjartsson D.F.
        • et al.
        BRCAPRO validation, sensitivity of genetic testing of BRCA1/BRCA2, and prevalence of other breast cancer susceptibility genes.
        J Clin Oncol. 2002; 20: 2701-2712
        • Enhus D.M.
        • Smith K.C.
        • Robinson L.
        • et al.
        Pretest prediction of BRCA1 or BRCA2 mutation by risk counselors and the computer model BRCAPRO.
        J Natl Cancer Inst. 2002; 94: 844-851
        • Vachon C.M.
        • Pankratz V.S.
        • Scott C.G.
        • et al.
        The contributions of breast density and common genetic variation to breast cancer risk.
        J Natl Cancer Inst. 2015; 107 ([pii:dju397])
        • Barlow W.E.
        • White E.
        • Ballard-Barbash R.
        • et al.
        Prospective breast cancer risk prediction model for women undergoing screening mammography.
        J Natl Cancer Inst. 2006; 98: 1204-1214
        • Tice J.A.
        • Cummings S.R.
        • Smith-Bindman R.
        • et al.
        Using clinical factors and mammographic breast density to estimate breast cancer risk: development and validation of a new predictive model.
        Ann Intern Med. 2008; 148: 337-347
        • Chen J.
        • Pee D.
        • Ayyagari R.
        • et al.
        Projecting absolute invasive breast cancer risk in shite women with a model that includes mammographic density.
        J Natl Cancer Inst. 2006; 98: 1215-1226
        • Brentnall A.R.
        • Harkness E.F.
        • Astley S.M.
        • et al.
        Mammographic density adds accuracy to both Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort.
        Breast Cancer Res. 2015; 17: 147
        • Mealiffe M.E.
        • Stokowski R.P.
        • Rhees B.K.
        • et al.
        Assessment of clinical validity of a breast cancer risk model combining genetic and clinical information.
        J Natl Cancer Inst. 2010; 102: 1618-1627
        • Brentnall A.R.
        • Evans D.G.
        • Cuzick J.
        Distribution of breast cancer risk from SNPs and classical risk factors in women of routine screening age in the UK.
        Br J Cancer. 2014; 110: 827-828
        • Pankratz V.S.
        • Degnim A.C.
        • Frank R.D.
        • et al.
        Model for individualized prediction of breast cancer risk after a benign breast biopsy.
        J Clin Oncol. 2015; 33: 923-929
        • Boggs D.A.
        • Rosenberg L.
        • Adams-Campbell L.L.
        • et al.
        Prospective approach to breast cancer risk prediction in African American women: the black women’s health study model.
        J Clin Oncol. 2015; 33: 1038-1044
        • Ford D.
        • Easton D.F.
        • Bishop D.T.
        • et al.
        Risks of cancer in BRCA1-mutation carriers. Breast Cancer Linkage Consortium.
        Lancet. 1994; 343: 692-695
        • Antoniou A.
        • Pharoah P.D.
        • Narod S.
        • et al.
        Average risk of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies.
        Am J Hum Genet. 2003; 72: 1117-1130
        • Ford D.
        • Easton D.F.
        • Stratton M.
        • et al.
        Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium.
        Am J Hum Genet. 1998; 62: 676-689
        • Chompret A.
        • Brugières L.
        • Ronsin M.
        • et al.
        P53 germline mutations in childhood cancers and cancer risk for carrier individuals.
        Br J Cancer. 2000; 82: 1932-1937
        • Bougeard G.
        • Renaux-Petel M.
        • Flaman J.M.
        • et al.
        Revisiting Li-Fraumeni syndrome from TP53 mutation carriers.
        J Clin Oncol. 2015; 33: 2345-2352
        • Tan M.H.
        • Mester J.L.
        • Ngeow J.
        • et al.
        Lifetime cancer risks in individuals with germline PTEN mutations.
        Clin Cancer Res. 2012; 18: 400-407
        • Antoniou A.C.
        • Casadei S.
        • Heikkinen T.
        • et al.
        Breast-cancer risk in families with mutations in PALB2.
        N Engl J Med. 2014; 371: 497-506
        • van Lier M.G.
        • Wagner A.
        • Mathus-Vliegen E.M.
        • et al.
        High cancer risk in Peutz-Jeghers syndrome: a systematic review and surveillance recommendations.
        Am J Gastroenterol. 2010; 105 ([author reply: 1265]): 1258-1264
        • Pharoah P.D.
        • Guilford P.
        • Caldas C.
        • International Gastric Cancer Linkage Consortium
        Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families.
        Gastroenterology. 2001; 121: 1348-1353
        • Kaurah P.
        • MacMillan A.
        • Boyd N.
        • et al.
        Founder and recurrent CDH1 mutations in families with hereditary diffuse gastric cancer.
        JAMA. 2007; 297: 2360-2372
        • van der Post R.S.
        • Vogelaar I.P.
        • Carneiro F.
        • et al.
        Hereditary diffuse gastric cancer: updated clinical guidelines with an emphasis on germline CDH1 mutation carriers.
        J Med Genet. 2015; 52: 361-374
        • Weischer M.
        • Bojesen S.E.
        • Ellervik C.
        • et al.
        CHEK2*1100delC genotyping for clinical assessment of breast cancer risk: meta-analyses of 26,000 patient cases and 27,000 controls.
        J Clin Oncol. 2008; 26: 542-548
        • Cybulski C.
        • Wokołorczyk D.
        • Jakubowska A.
        • et al.
        Risk of breast cancer in women with a CHEK2 mutation with and without a family history of breast cancer.
        J Clin Oncol. 2011; 29: 3747-3752
        • Ahmed M.
        • Rahman N.
        ATM and breast cancer susceptibility.
        Oncogene. 2006; 25: 5906-5911
        • Swift M.
        • Morrell D.
        • Massey R.B.
        • et al.
        Incidence of cancer in 161 families affected by ataxia-telangiectasia.
        N Engl J Med. 1991; 325: 1831-1836
        • Thompson D.
        • Duedal S.
        • Kirner J.
        • et al.
        Cancer risks and mortality in heterozygous ATM mutation carriers.
        J Natl Cancer Inst. 2005; 97: 813-822
        • Zhang B.
        • Beeghly-Fadiel A.
        • Long J.
        • et al.
        Genetic variants associated with breast-cancer risk: comprehensive research synopsis, meta-analysis, and epidemiological evidence.
        Lancet Oncol. 2011; 12: 477-488
        • Steffen J.
        • Nowakowska D.
        • Niwińska A.
        • et al.
        Germline mutations 657del5 of the NBS1 gene contribute significantly to the incidence of breast cancer in Central Poland.
        Int J Cancer. 2006; 119: 472-475
        • Seminog O.O.
        • Goldacre M.J.
        Risk of benign tumours of nervous system, and of malignant neoplasm, in people with neurofibromatosis: population-based record-linkage study.
        Br J Cancer. 2013; 108: 193-198
        • Madanikia S.A.
        • Bergner A.
        • Ye X.
        • et al.
        Increased risk of breast cancer in women with NF1.
        Am J Med Genet A. 2012; 158A: 3056-3060
        • Rafnar T.
        • Gudbjartsson D.F.
        • Sulem P.
        • et al.
        Mutations in BRIP1 confer high risk of ovarian cancer.
        Nat Genet. 2011; 43: 1104-1107
        • Seal S.
        • Thompson D.
        • Renwick A.
        • et al.
        Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles.
        Nat Genet. 2006; 38: 1239-1241
        • Easton D.F.
        • Lesueur F.
        • Decker B.
        • et al.
        No evidence that protein truncating variants in BRIP1 are associated with breast cancer risk: implications for gene panel testing.
        J Med Genet. 2016; 53: 298-309
        • Le Calvez-Kelm F.
        • Oliver J.
        • Damiola F.
        • et al.
        RAD51 and breast cancer susceptibility: no evidence for rare variant association in the Breast Cancer Family Registry study.
        PLoS One. 2012; 7: e52374
        • Coulet F.
        • Fajac A.
        • Colas C.
        • et al.
        Germline RAD51C mutations in ovarian cancer susceptibility.
        Clin Genet. 2013; 83: 332-336
        • Loveday C.
        • Turnbull C.
        • Ramsay E.
        • et al.
        Germline mutations in RAD51D confer susceptibility to ovarian cancer.
        Nat Genet. 2011; 43: 879-882
        • Vogt S.
        • Jones N.
        • Christian D.
        • et al.
        Expanded extracolonic tumor spectrum in MUTYH-associated polyposis.
        Gastroenterology. 2009; 137: 1976-1985.e1-10
        • Rennert G.
        • Lejbkowicz F.
        • Cohen I.
        • et al.
        MutYH mutation carriers have increased breast cancer risk.
        Cancer. 2012; 118: 1989-1993
        • Damiola F.
        • Pertesi M.
        • Oliver J.
        • et al.
        Rare key functional domain missense substitutions in MRE11A, RAD50, and NBN contribute to breast cancer susceptibility: results from a Breast Cancer Family Registry case-control mutation-screening study.
        Breast Cancer Res. 2014; 16: R58
        • Heikkinen K.
        • Rapakko K.
        • Karppinen S.M.
        • et al.
        RAD50 and NBS1 are breast cancer susceptibility genes associated with genomic instability.
        Carcinogenesis. 2006; 27: 1593-1599
        • Madigan M.P.
        • Ziegler R.G.
        • Benichou J.
        • et al.
        Proportion of breast cancer cases in the United States explained by well-established risk factors.
        J Natl Cancer Inst. 1995; 87: 1681-1685
        • Tyrer J.
        • Duffy S.W.
        • Cuzick J.
        A breast cancer prediction model incorporating familial and personal risk factors.
        Stat Med. 2004; 23: 1111-1130
        • Berry D.A.
        • Parmigiani G.
        • Sanchez J.
        • et al.
        Probability of carrying a mutation of breast-ovarian cancer gene BRCA1 based on family history.
        J Natl Cancer Inst. 1997; 89: 227-238
        • Parmigiani G.
        • Berry D.
        • Aguilar O.
        Determining carrier probabilities for breast cancer-susceptibility genes BRCA1 and BRCA2.
        Am J Hum Genet. 1998; 62: 145-158
        • Antoniou A.C.
        • Pharoah P.D.
        • McMullan G.
        • et al.
        A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and other genes.
        Br J Cancer. 2002; 86: 76-83
        • Antoniou A.C.
        • Pharoah P.P.
        • Smith P.
        • et al.
        The BOADICEA model of genetic susceptibility to breast and ovarian cancer.
        Br J Cancer. 2004; 91: 1580-1590
        • Brinton J.T.
        • Barke L.D.
        • Freivogel M.E.
        • et al.
        Breast cancer risk assessment in 64,659 women at a single high-volume mammography clinic.
        Acad Radiol. 2012; 19: 95-99
        • Brinton J.T.
        • Barke L.D.
        • Freivogel M.E.
        • et al.
        Informing women and their physicians about recommendations for adjunct breast MRI Screening: a cohort study.
        Health Commun. 2017; 3: 1-7
        • Oeffinger K.C.
        • Fontham E.T.
        • Etzioni R.
        • et al.
        Breast cancer screening for women at average risk: 2015 guideline update from the American Cancer Society.
        JAMA. 2015; 314: 1599-1614
        • Siu A.L.
        • On behalf of the U.S. Preventative Services Task Force
        Screening for breast cancer: U.S. Preventative Services Task Force recommendation statement.
        Ann Intern Med. 2016; 164: 279-296
        • Ramsey S.D.
        • Yoon P.
        • Moonesinghe R.
        • et al.
        Population-based study of the prevalence of family history of cancer: implications for cancer screening and prevention.
        Genet Med. 2006; 8: 571-575
        • Murff H.J.
        • Greevy R.A.
        • Syngal S.
        The comprehensiveness of family cancer history assessments in primary care.
        Community Genet. 2007; 10: 174-180
        • Lee C.H.
        • Dershaw D.D.
        • Kopans D.
        • et al.
        Breast cancer screening with imaging: recommendations from the Society of Breast Imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer.
        J Am Coll Radiol. 2010; 7: 18-27
      3. Available at: https://www.breastsurgeons.org/new_layout/about/statements/PDF_Statements/Screening_Mammography.pdf. Accessed September 5, 2016.

      4. Plichta JK, Coopey SB, Griffin ME, et al. Application of the 2015 ACS and ASBS Screening Mammography Guidelines: Risk Assessment is Critical for Women Ages 40-44. Presented at ASBS Annual Meeting, Massachusetts General Hospital. Boston, 2016. Available at: https://www.breastsurgeons.org/docs2016/press/PLICHTA-Risk_based_screening-slides.pdf.