Advertisement

MR Imaging for the Evaluation of Diffuse Lung Disease

Where Are We?
Published:September 15, 2022DOI:https://doi.org/10.1016/j.rcl.2022.06.007

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Radiologic Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Behr J.
        Approach to the diagnosis of interstitial lung disease.
        Clin Chest Med. 2012; 33: 1-10
        • Mayo J.R.
        CT evaluation of diffuse infiltrative lung disease: dose considerations and optimal technique.
        J Thorac Imaging. 2009; 24: 252-259
        • Raghu G.
        • Remy-Jardin M.
        • Myers J.L.
        • et al.
        Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT Clinical Practice Guideline.
        Am J Respir Crit Care Med. 2018; 198: e44-e68
        • Weatherley N.D.
        • Eaden J.A.
        • Stewart N.J.
        • et al.
        Experimental and quantitative imaging techniques in interstitial lung disease.
        Thorax. 2019; 74: 611-619
        • Johnson K.M.
        • Fain S.B.
        • Schiebler M.L.
        • et al.
        Optimized 3D ultrashort echo time pulmonary MRI.
        Magn Reson Med. 2013; 70: 1241-1250
        • Marshall H.
        • Stewart N.J.
        • Chan H.F.
        • et al.
        In vivo methods and applications of xenon-129 magnetic resonance.
        Prog Nucl Magn Reson Spectrosc. 2021; 122: 42-62
        • Svenningsen S.
        • Kirby M.
        • Starr D.
        • et al.
        Hyperpolarized (3) He and (129) Xe MRI: differences in asthma before bronchodilation.
        J Magn Reson Imaging. 2013; 38: 1521-1530
        • Roos J.E.
        • McAdams H.P.
        • Kaushik S.S.
        • et al.
        Hyperpolarized gas MR imaging: technique and applications.
        Magn Reson Imaging Clin N Am. 2015; 23: 217-229
        • Norquay G.
        • Collier G.J.
        • Rao M.
        • et al.
        ˆ{129}Xe-Rb spin-exchange optical pumping with high photon efficiency.
        Phys Rev Lett. 2018; 121: 153201
        • Driehuys B.
        • Martinez-Jimenez S.
        • Cleveland Z.I.
        • et al.
        Chronic obstructive pulmonary disease: safety and tolerability of hyperpolarized 129Xe MR imaging in healthy volunteers and patients.
        Radiology. 2012; 262: 279-289
        • Kirby M.
        • Svenningsen S.
        • Owrangi A.
        • et al.
        Hyperpolarized 3He and 129Xe MR imaging in healthy volunteers and patients with chronic obstructive pulmonary disease.
        Radiology. 2012; 265: 600-610
        • Ouriadov A.
        • Farag A.
        • Kirby M.
        • et al.
        Lung morphometry using hyperpolarized (129) Xe apparent diffusion coefficient anisotropy in chronic obstructive pulmonary disease.
        Magn Reson Med. 2013; 70: 1699-1706
        • Chan H.F.
        • Stewart N.J.
        • Norquay G.
        • et al.
        3D diffusion-weighted 129 Xe MRI for whole lung morphometry.
        Magn Reson Med. 2018; 79: 2986-2995
        • Qing K.
        • Ruppert K.
        • Jiang Y.
        • et al.
        Regional mapping of gas uptake by blood and tissue in the human lung using hyperpolarized xenon-129 MRI.
        J Magn Reson Imaging. 2014; 39: 346-359
        • Kaushik S.S.
        • Robertson S.H.
        • Freeman M.S.
        • et al.
        Single-breath clinical imaging of hyperpolarized (129)Xe in the airspaces, barrier, and red blood cells using an interleaved 3D radial 1-point Dixon acquisition.
        Magn Reson Med. 2016; 75: 1434-1443
        • Wang Z.
        • Rankine L.
        • Bier E.A.
        • et al.
        Using hyperpolarized 129Xe gas-exchange MRI to model the regional airspace, membrane, and capillary contributions to diffusing capacity.
        J Appl Physiol (1985). 2021; 130: 1398-1409
      1. Global Strategy for Prevention, Diagnosis and Management of COPD: 2021 Report (PDF). Global Initiative for Chronic Obstructive Lung Disease. 25 November 2020. https://goldcopd.org/wp-content/uploads/2020/11/GOLD-REPORT-2021-v1.1-25Nov20_WMV.pdf Accessed 01/01/2022.

        • Lynch D.A.
        • Moore C.M.
        • Wilson C.
        • et al.
        CT-based visual classification of emphysema: association with mortality in the COPDGene Study.
        Radiology. 2018; 288: 859-866
        • Chen A.
        • Karwoski R.A.
        • Gierada D.S.
        • et al.
        Quantitative CT analysis of diffuse lung disease.
        Radiographics. 2020; 40: 28-43
        • van Beek E.J.
        • Dahmen A.M.
        • Stavngaard T.
        • et al.
        Hyperpolarised 3He MRI versus HRCT in COPD and normal volunteers: PHIL trial.
        Eur Respir J. 2009; 34: 1311-1321
        • Virgincar R.S.
        • Cleveland Z.I.
        • Kaushik S.S.
        • et al.
        Quantitative analysis of hyperpolarized 129Xe ventilation imaging in healthy volunteers and subjects with chronic obstructive pulmonary disease.
        NMR Biomed. 2013; 26: 424-435
        • Qing K.
        • Tustison N.J.
        • Mugler 3rd, J.P.
        • et al.
        Probing changes in lung physiology in COPD using CT, perfusion MRI, and hyperpolarized Xenon-129 MRI.
        Acad Radiol. 2019; 26: 326-334
        • Mummy D.G.
        • Coleman E.M.
        • Wang Z.
        • et al.
        Regional gas exchange measured by 129 Xe magnetic resonance imaging before and after combination bronchodilators treatment in chronic obstructive pulmonary disease.
        J Magn Reson Imaging. 2021; 54: 964-974
        • Simonneau G.
        • Montani D.
        • Celermajer D.S.
        • et al.
        Haemodynamic definitions and updated clinical classification of pulmonary hypertension.
        Eur Respir J. 2019; 53: 1801913
        • Ascha M.
        • Renapurkar R.D.
        • Tonelli A.R.
        A review of imaging modalities in pulmonary hypertension.
        Ann Thorac Med. 2017; 12: 61-73
        • Remy-Jardin M.
        • Ryerson C.J.
        • Schiebler M.L.
        • et al.
        Imaging of pulmonary hypertension in adults: a position paper from the Fleischner Society.
        Radiology. 2021; 298: 531-549
        • Dahhan T.
        • Kaushik S.S.
        • He M.
        • et al.
        Abnormalities in hyperpolarized (129)Xe magnetic resonance imaging and spectroscopy in two patients with pulmonary vascular disease.
        Pulm Circ. 2016; 6: 126-131
        • Bier E.A.
        • Robertson S.H.
        • Schrank G.M.
        • et al.
        A protocol for quantifying cardiogenic oscillations in dynamic 129 Xe gas exchange spectroscopy: the effects of idiopathic pulmonary fibrosis.
        NMR Biomed. 2019; 32: e4029
        • Ruppert K.
        • Altes T.A.
        • Mata J.F.
        • et al.
        Detecting pulmonary capillary blood pulsations using hyperpolarized xenon-129 chemical shift saturation recovery (CSSR) MR spectroscopy.
        Magn Reson Med. 2016; 75: 1771-1780
        • Niedbalski P.J.
        • Bier E.A.
        • Wang Z.
        • et al.
        Mapping cardiopulmonary dynamics within the microvasculature of the lungs using dissolved 129Xe MRI.
        J Appl Physiol (1985). 2020; 129: 218-229
        • Wang Z.
        • Bier E.A.
        • Swaminathan A.
        • et al.
        Diverse cardiopulmonary diseases are associated with distinct xenon magnetic resonance imaging signatures.
        Eur Respir J. 2019; 54: 1900831
        • Dharmage S.C.
        • Perret J.L.
        • Custovic A.
        Epidemiology of asthma in children and adults.
        Front Pediatr. 2019; 7: 246
        • Gallucci M.
        • Carbonara P.
        • Pacilli A.M.G.
        • et al.
        Use of symptoms scores, spirometry, and other pulmonary function testing for asthma monitoring.
        Front Pediatr. 2019; 7: 54
        • Richards J.C.
        • Lynch D.
        • Koelsch T.
        • et al.
        Imaging of asthma.
        Immunol Allergy Clin North Am. 2016; 36: 529-545
        • Kooner H.K.
        • McIntosh M.J.
        • Desaigoudar V.
        • et al.
        Pulmonary functional MRI: detecting the structure-function pathologies that drive asthma symptoms and quality of life.
        Respirology. 2022; 27: 114-133
        • de Lange E.E.
        • Altes T.A.
        • Patrie J.T.
        • et al.
        Evaluation of asthma with hyperpolarized helium-3 MRI: correlation with clinical severity and spirometry.
        Chest. 2006; 130: 1055-1062
        • Samee S.
        • Altes T.
        • Powers P.
        • et al.
        Imaging the lungs in asthmatic patients by using hyperpolarized helium-3 magnetic resonance: assessment of response to methacholine and exercise challenge.
        J Allergy Clin Immunol. 2003; 111: 1205-1211
        • Mummy D.G.
        • Kruger S.J.
        • Zha W.
        • et al.
        Ventilation defect percent in helium-3 magnetic resonance imaging as a biomarker of severe outcomes in asthma.
        J Allergy Clin Immunol. 2018; 141: 1140-1141.e4
        • Mummy D.G.
        • Carey K.J.
        • Evans M.D.
        • et al.
        Ventilation defects on hyperpolarized helium-3 MRI in asthma are predictive of 2-year exacerbation frequency.
        J Allergy Clin Immunol. 2020; 146: 831-839.e6
        • Ebner L.
        • He M.
        • Virgincar R.S.
        • et al.
        Hyperpolarized 129Xenon magnetic resonance imaging to quantify regional ventilation differences in mild to moderate asthma: a prospective comparison between semiautomated ventilation defect percentage calculation and pulmonary function tests.
        Invest Radiol. 2017; 52: 120-127
        • Svenningsen S.
        • Haider E.A.
        • Eddy R.L.
        • et al.
        Normalisation of MRI ventilation heterogeneity in severe asthma by dupilumab.
        Thorax. 2019; 74: 1087-1088
        • Wallis A.
        • Spinks K.
        The diagnosis and management of interstitial lung diseases.
        BMJ. 2015; 350: h2072
        • Nicholson A.G.
        • Colby T.V.
        • du Bois R.M.
        • et al.
        The prognostic significance of the histologic pattern of interstitial pneumonia in patients presenting with the clinical entity of cryptogenic fibrosing alveolitis.
        Am J Respir Crit Care Med. 2000; 162: 2213-2217
        • Petnak T.
        • Lertjitbanjong P.
        • Thongprayoon C.
        • et al.
        Impact of antifibrotic therapy on mortality and acute exacerbation in idiopathic pulmonary fibrosis: a systematic review and meta-analysis.
        Chest. 2021; 160: 1751-1763
        • Mammarappallil J.G.
        • Rankine L.
        • Wild J.M.
        • et al.
        New developments in imaging idiopathic pulmonary fibrosis with hyperpolarized xenon magnetic resonance imaging.
        J Thorac Imaging. 2019; 34: 136-150
        • Kaushik S.S.
        • Freeman M.S.
        • Yoon S.W.
        • et al.
        Measuring diffusion limitation with a perfusion-limited gas: hyperpolarized 129Xe gas-transfer spectroscopy in patients with idiopathic pulmonary fibrosis.
        J Appl Physiol (1985). 2014; 117: 577-585
        • Stewart N.J.
        • Leung G.
        • Norquay G.
        • et al.
        Experimental validation of the hyperpolarized 129 Xe chemical shift saturation recovery technique in healthy volunteers and subjects with interstitial lung disease.
        Magn Reson Med. 2015; 74: 196-207
        • Stewart N.J.
        • Horn F.C.
        • Norquay G.
        • et al.
        Reproducibility of quantitative indices of lung function and microstructure from 129 Xe chemical shift saturation recovery (CSSR) MR spectroscopy.
        Magn Reson Med. 2017; 77: 2107-2113
        • Wang Z.
        • Robertson S.H.
        • Wang J.
        • et al.
        Quantitative analysis of hyperpolarized 129 Xe gas transfer MRI.
        Med Phys. 2017; 44: 2415-2428
        • He M.
        • Driehuys B.
        • Que L.G.
        • et al.
        Using hyperpolarized 129Xe MRI to quantify the pulmonary ventilation distribution.
        Acad Radiol. 2016; 23: 1521-1531
        • Weatherly N.
        • Stewart N.
        • Norquay G.
        • et al.
        Hyperpolarized 129Xe MR spectroscopy detects short-term changes in lung gas exchange efficiency in idiopathic pulmonary fibrosis.
        Proc Intl Soc Mag Reson Med. 2018; 26: 0966
        • Wang J.M.
        • Robertson S.H.
        • Wang Z.
        • et al.
        Using hyperpolarized 129Xe MRI to quantify regional gas transfer in idiopathic pulmonary fibrosis.
        Thorax. 2018; 73: 21-28
        • Mummy D.G.
        • Bier E.A.
        • Wang Z.
        • et al.
        Hyperpolarized 129Xe MRI and spectroscopy of gas-exchange abnormalities in nonspecific interstitial pneumonia.
        Radiology. 2021; 301: 211-220
        • Eaden J.
        • Collier G.
        • Norquay G.
        • et al.
        S75 Hyperpolarised 129-xenon MRI in differentiating between fibrotic and inflammatory interstitial lung disease and assessing longitudinal change.
        Thorax. 2021; 76: A46-A47
        • Roach D.J.
        • Crémillieux Y.
        • Fleck R.J.
        • et al.
        Ultrashort echo-time magnetic resonance imaging is a sensitive method for the evaluation of early cystic fibrosis lung disease.
        Ann Am Thorac Soc. 2016; 13: 1923-1931
        • Mussell G.T.
        • Marshall H.
        • Smith L.J.
        • et al.
        Xenon ventilation MRI in difficult asthma: initial experience in a clinical setting.
        ERJ Open Res. 2021; 7: 00785-02020
        • McMahon C.J.
        • Dodd J.D.
        • Hill C.
        • et al.
        Hyperpolarized 3helium magnetic resonance ventilation imaging of the lung in cystic fibrosis: comparison with high resolution CT and spirometry.
        Eur Radiol. 2006; 16: 2483-2490
        • Donnelly L.F.
        • MacFall J.R.
        • McAdams H.P.
        • et al.
        Cystic fibrosis: combined hyperpolarized 3He-enhanced and conventional proton MR imaging in the lung: -preliminary observations.
        Radiology. 1999; 212: 885-889
        • Thomen R.P.
        • Walkup L.L.
        • Roach D.J.
        • et al.
        Hyperpolarized 129Xe for investigation of mild cystic fibrosis lung disease in pediatric patients.
        J Cyst Fibros. 2017; 16: 275-282
        • Mentore K.
        • Froh D.K.
        • de Lange E.E.
        • et al.
        Hyperpolarized HHe 3 MRI of the lung in cystic fibrosis: assessment at baseline and after bronchodilator and airway clearance treatment.
        Acad Radiol. 2005; 12: 1423-1429
        • Altes T.A.
        • Johnson M.
        • Fidler M.
        • et al.
        Use of hyperpolarized helium-3 MRI to assess response to ivacaftor treatment in patients with cystic fibrosis.
        J Cyst Fibros. 2017; 16: 267-274
        • Coronaviridae Study Group of the International Committee on Taxonomy of Viruses
        The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2.
        Nat Microbiol. 2020; 5: 536-544
        • Yoon S.H.
        • Lee K.H.
        • Kim J.Y.
        • et al.
        Chest radiographic and CT findings of the 2019nNovel Coronavirus disease (COVID-19): analysis of nine patients treated in Korea.
        Korean J Radiol. 2020; 21: 494-500
        • Ates O.F.
        • Taydas O.
        • Dheir H.
        Thorax magnetic resonance imaging findings in patients with coronavirus disease (COVID-19).
        Acad Radiol. 2020; 27: 1373-1378
        • Doykov I.
        • Hällqvist J.
        • Gilmour K.C.
        • et al.
        The long tail of Covid-19': the detection of a prolonged inflammatory response after a SARS-CoV-2 infection in asymptomatic and mildly affected patients.
        F1000Res. 2020; 9: 1349
        • Han X.
        • Fan Y.
        • Alwalid O.
        • et al.
        Six-month follow-up chest CT findings after severe COVID-19 pneumonia.
        Radiology. 2021; 299: E177-E186
        • Li H.
        • Zhao X.
        • Wang Y.
        • et al.
        Damaged lung gas exchange function of discharged COVID-19 patients detected by hyperpolarized 129Xe MRI.
        Sci Adv. 2021; 7: eabc8180
        • Hon K.L.
        • Leung C.W.
        • Cheng W.T.
        • et al.
        Clinical presentations and outcome of severe acute respiratory syndrome in children.
        Lancet. 2003; 361: 1701-1703
        • Grist J.T.
        • Chen M.
        • Collier G.J.
        • et al.
        Hyperpolarized 129Xe MRI abnormalities in dyspneic patients 3 months after COVID-19 pneumonia: preliminary results.
        Radiology. 2021; 301: E353-E360