Advertisement

Multienergy Computed Tomography Applications

Trauma
Published:October 10, 2022DOI:https://doi.org/10.1016/j.rcl.2022.07.003

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Radiologic Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control. Web-based injury statistics query and reporting system (WISQARS).
        (Available at:) (Accessed April 2022)
      2. World Health Organization. Web-based injuries and violence fact sheet.
        • Blow O.
        • Magliore L.
        • Claridge J.
        • et al.
        The golden hour and the silver day: detection and correction of occult hypoperfusion within 24 hours improves outcome from major trauma.
        J Trauma Acute Care Surg. 1999; 47: 964-969
        • Howard J.T.
        • Kotwal R.S.
        • Santos-Lazada A.R.
        • et al.
        Reexamination of a battlefield trauma golden hour policy.
        J Trauma Acute Care Surg. 2018; 84: 11-18
        • Soto J.A.
        • Anderson S.W.
        Multidetector CT of blunt abdominal trauma.
        Radiology. 2012; 265: 678-693
        • Hinzpeter R.
        • Boehm T.
        • Boll D.
        • et al.
        Imaging algorithms and CT protocols in trauma patients: survey of Swiss emergency centers.
        Eur Radiol. 2017; 27: 1922-1928
        • Nguyen D.
        • Platon A.
        • Shanmuganathan K.
        • et al.
        Evaluation of a single-pass continuous whole-body 16-MDCT protocol for patients with polytrauma.
        Am J Roentgenol. 2009; 192: 3-10
        • Gomez E.
        • Horton K.
        • Fishman E.K.
        • et al.
        CT of acute abdominopelvic hemorrhage: protocols, pearls, and pitfalls.
        Abdom Radiol. 2022; 47: 475-484
        • Durso A.M.
        • Paes F.M.
        • Caban K.
        • et al.
        Evaluation of penetrating abdominal and pelvic trauma.
        Eur J Radiol. 2020; 130: 109187
        • DiChiro G.
        • Brooks R.
        • Kessler R.
        • et al.
        Tissue signatures with dual-energy computed tomography.
        Radiology. 1979; 131: 521-523
        • Potter C.A.
        • Sodickson A.D.
        Dual-energy CT in emergency neuroimaging: added value and novel applications.
        Radiographics. 2016; 36: 2186-2198
        • Sade R.
        • Kantarci M.
        • Ogul H.
        • et al.
        The feasibility of dual-energy computed tomography in cardiac contusion imaging for mildest blunt cardiac injury.
        J Comput Assist Tomogr. 2017; 41: 354-359
        • Wortman J.R.
        • Uyeda J.W.
        • Fulwadhva U.P.
        • et al.
        Dual-energy CT for abdominal and pelvic trauma.
        Radiographics. 2018; 38: 586-602
        • Gosangi B.
        • Mandell J.C.
        • Weaver M.J.
        • et al.
        Bone marrow edema at dual-energy CT: a game changer in the emergency department.
        Radiographics. 2020; 40: 859-874
        • Aran S.
        • Besheli L.D.
        • Karcaaltincaba M.
        • et al.
        Applications of dual-energy CT in emergency radiology.
        Am J Roentgenol. 2014; 202: W314-W324
        • Johnson T.R.C.
        Dual-energy CT: general principles.
        Am J Roentgenol. 2012; 199: S3-S8
        • Parakh A.
        • Lennartz S.
        • An C.
        • et al.
        Dual-energy CT images: pearls and pitfalls.
        RadioGraphics. 2021; 41: 98-119
        • D’Angelo T.
        • Albrecht M.H.
        • Caudo D.
        • et al.
        Virtual non-calcium dual-energy CT: clinical applications.
        Eur Radiol Exp. 2021; 5: 1-13
        • McCollough C.H.
        • Leng S.
        • Yu L.
        • et al.
        Dual- and multi-energy CT: principles, technical approaches, and clinical applications.
        Radiology. 2015; 276: 637-653
        • Mileto A.
        • Ramirez-Giraldo J.C.
        • Marin D.
        • et al.
        Nonlinear image blending for dual-energy MDCT of the abdomen: can image quality be preserved if the contrast medium dose is reduced?.
        Am J Roentgenol. 2014; 203: 838-845
        • Bodanapally U.K.
        • Shanmuganathan K.
        • Ramaswamy M.
        • et al.
        Iodine-based dual-energy CT of traumatic hemorrhagic contusions: relationship to in-hospital mortality and short-term outcome.
        Radiology. 2019; 292: 730-738
        • Naruto N.
        • Itoh T.
        • Noguchi K.
        Dual energy computed tomography for the head.
        Jpn J Radiol. 2018; 36: 69-80
        • Naruto N.
        • Tannai H.
        • Nishikawa K.
        • et al.
        Dual-energy bone removal computed tomography (BRCT): preliminary report of efficacy of acute intracranial hemorrhage detection.
        Emerg Radiol. 2018; 25: 29-33
        • Emet M.
        • Saritemur M.
        • Altuntas B.
        • et al.
        Dual-source computed tomography may define cardiac contusion in patients with blunt chest trauma in.
        Am J Emerg Med. 2015; 33: 865.e1-865.e3
        • Hammer M.M.
        • Raptis D.A.
        • Cummings K.W.
        • et al.
        Imaging in blunt cardiac injury: computed tomographic findings in cardiac contusion and associated injuries.
        Injury. 2016; 47: 1025-1030
        • Bierry G.
        • Venkatasamy A.
        • Kremer S.
        • et al.
        Dual-energy CT in vertebral compression fractures: performance of visual and quantitative analysis for bone marrow edema demonstration with comparison to MRI.
        Skeletal Radiol. 2014; 43: 485-492
        • Karaca L.
        • Yuceler Z.
        • Kantarci M.
        • et al.
        The feasibility of dual-energy CT in differentiation of vertebral compression fractures.
        Br J Radiol. 2016; 89: 20150300
        • Kellock T.T.
        • Nicolaou S.
        • Kim S.S.Y.
        • et al.
        Detection of bone marrow edema in nondisplaced hip fractures: utility of a virtual noncalcium dual-Energy CT application1.
        Radiology. 2017; 284: 798-805
        • Flores E.J.
        • Abujudeh H.H.
        Applications of dual-energy CT in emergency radiology.
        AJR Am J Roentgenol. 2014; 202: 314-324
        • Hixson H.R.
        • Leiva-Salinas C.
        • Sumer S.
        • et al.
        Utilizing dual energy CT to improve CT diagnosis of posterior fossa ischemia.
        J Neuroradiol. 2016; 43: 346-352
        • Pomerantz S.R.
        • Kamalian S.
        • Zhang D.
        • et al.
        Virtual monochromatic reconstruction of dual-energy unenhanced head CT at 65-75 keV maximizes image quality compared with conventional polychromatic CT.
        Radiology. 2013; 266: 318-325
        • Hu R.
        • Besheli L.D.
        • Young J.
        • et al.
        Dual-energy head CT enables accurate distinction of intraparenchymal hemorrhage from calcification in emergency department patients.
        Radiology. 2016; 280: 177-183
        • Wong W.D.
        • Mohammed M.F.
        • Nicolaou S.
        • et al.
        Impact of dual-energy CT in the emergency department: increased radiologist confidence, reduced need for follow-up imaging, and projected cost benefit.
        Am J Roentgenol. 2020; 215: 1528-1538
        • Baldon I.V.
        • Amorim A.C.
        • Marques Santana Larissa
        • et al.
        The extravasation of contrast as a predictor of cerebral hemorrhagic contusion expansion, poor neurological outcome and mortality after traumatic brain injury: a systematic review and meta-analysis.
        PLoS One. 2020; 15: 1-12
        • Yan W.Q.
        • Xin Y.K.
        • Jing Y.
        • et al.
        Iodine quantification using dual-energy computed tomography for differentiating thymic tumors.
        J Comput Assist Tomogr. 2018; 42: 873-880
        • Lee D.H.
        • Lee Y.H.
        • Seo H.S.
        • et al.
        Dual-energy CT iodine quantification for characterizing focal thyroid lesions.
        Head Neck. 2019; 41: 1024-1031
        • Kaltenbach B.
        • Wichmann J.L.
        • Pfeifer S.
        • et al.
        Iodine quantification to distinguish hepatic neuroendocrine tumor metastasis from hepatocellular carcinoma at dual-source dual-energy liver CT.
        Eur J Radiol. 2018; 105: 20-24
        • Costantino M.
        • Gosselin M.V.
        • Primack S.L.
        The ABC’s of thoracic trauma imaging.
        Semin Roentgenol. 2006; 41: 209-225
        • Wellenberg R.H.H.
        • Hakvoort E.T.
        • Slump C.H.
        • et al.
        Metal artifact reduction techniques in musculoskeletal CT-imaging.
        Eur J Radiol. 2018; 107: 60-69
        • Katsura M.
        • Sato J.
        • Akahane M.
        • et al.
        Current and novel techniques for metal artifact reduction at CT: practical guide for radiologists.
        RadioGraphics. 2017; 38: 450-461
        • Long Z.
        • DeLone D.R.
        • Kotsenas A.L.
        • et al.
        Clinical assessment of metal artifact reduction methods in dual-energy CT examinations of instrumented spines.
        Am J Roentgenol. 2019; 212: 395-401
        • Kozar R.A.
        • Crandall M.
        • Shanmuganathan K.
        • et al.
        Organ injury scaling 2018 update: spleen, liver, and kidney.
        J Trauma Acute Care Surg. 2018; 85: 1119-1122
        • Uyeda J.W.
        • LeBedis C.A.
        • Penn D.R.
        • et al.
        Active hemorrhage and vascular injuries in splenic trauma: utility of the arterial phase in multidetector CT.
        Radiology. 2014; 270: 99-106
        • Sullivan I.W.
        • Hota P.
        • Dako F.
        • et al.
        Dependent layering of venous refluxed contrast: a sign of critically low cardiac output.
        Radiol Case Rep. 2019; 14: 230-234
        • Yamada Y.
        • Jinzaki M.
        • Tanami Y.
        • et al.
        Virtual monochromatic spectral imaging for the evaluation of hypovascular hepatic metastases the optimal monochromatic level with fast kilovoltage switching dual-energy computed tomography.
        Invest Radiol. 2012; 47: 292-298
        • Sudarski S.
        • Apfaltrer P.
        • Nance J.W.
        • et al.
        Objective and subjective image quality of liver parenchyma and hepatic metastases with virtual monoenergetic dual-source dual-energy CT reconstructions. An analysis in patients with gastrointestinal stromal tumor.
        Acad Radiol. 2014; 21: 514-522
        • Nagayama Y.
        • Iyama A.
        • Oda S.
        • et al.
        Dual-layer dual-energy computed tomography for the assessment of hypovascular hepatic metastases: impact of closing k-edge on image quality and lesion detectability.
        Eur Radiol. 2019; 29: 2837-2847
        • Sun E.X.
        • Wortman J.R.
        • Uyeda J.W.
        • et al.
        Virtual monoenergetic dual-energy CT for evaluation of hepatic and splenic lacerations.
        Emerg Radiol. 2019; 26: 419-425
        • Ayoob A.R.
        • Lee J.T.
        • Herr K.
        • et al.
        Pancreatic trauma: imaging review and management update.
        Radiographics. 2021; 41: 58-74
        • Federle M.
        • Courcoulas A.
        • Powell M.
        • et al.
        Radiology blunt splenic injury in adults: clinical and CT criteria for management, with emphasis on active extravasation.
        Radiology. 1998; 206: 137-142
        • Anderson S.W.
        • Varghese J.C.
        • Lucey B.C.
        • et al.
        Blunt splenic trauma: delayed-phase CT for differentiation of active hemorrhage from contained vascular injury in patients.
        Radiology. 2007; 243: 88-95
        • Maturen K.E.
        • Kaza R.K.
        • Liu P.S.
        • et al.
        ‘Sweet spot’” for endoleak detection: optimizing contrast to noise using low keV reconstructions from fast-switch kVp dual-energy CT.
        J Comput Assist Tomogr. 2012; 36: 83-87
        • Vlahos I.
        • Godoy M.C.B.
        • Naidich D.P.
        Dual-energy computed tomography imaging of the aorta.
        J Thorac Imaging. 2010; 25: 289-300
        • Tran D.N.
        • Straka M.
        • Roos J.E.
        • et al.
        Dual-energy CT discrimination of iodine and calcium: experimental results and implications for lower extremity CT angiography.
        Acad Radiol. 2009; 16: 160-171
        • Firetto M.C.
        • Sala F.
        • Petrini M.
        • et al.
        Blunt bowel and mesenteric trauma: role of clinical signs along with CT findings in patients’ management.
        Emerg Radiol. 2018; 25: 461-467
        • Brody J.M.
        • Leighton D.B.
        • Murphy B.L.
        • et al.
        CT of blunt trauma bowel and mesenteric injury: typical findings and pitfalls in diagnosis.
        RadioGraphics. 2000; 20: 1525-1536
        • Wang T.J.
        • Barrett S.
        • Ali I.
        • et al.
        Dual-energy CT in the acute setting: bowel trauma.
        Front Radiol. 2022; 2: 835834
        • Baş S.
        • Zarbaliyev E.
        The role of dual-energy computed tomography in locating gastrointestinal tract perforations.
        Cureus. 2021; 13: e15265
        • Simonetti I.
        • Verde F.
        • Palumbo L.
        • et al.
        Dual energy computed tomography evaluation of skeletal traumas.
        Eur J Radiol. 2021; 134: 109456
        • Wong A.J.N.
        • Wong M.
        • Kutschera P.
        • et al.
        Dual-energy CT in musculoskeletal trauma.
        Clin Radiol. 2021; 76: 38-49
        • Yang P.
        • Wu G.
        • Chang X.
        Diagnostic accuracy of dual-energy computed tomography in bone marrow edema with vertebral compression fractures: a meta-analysis.
        Eur J Radiol. 2018; 99: 124-129
        • Ai S.
        • Qu M.
        • Glazebrook K.N.
        • et al.
        Use of dual-energy CT and virtual non-calcium techniques to evaluate post-traumatic bone bruises in knees in the subacute setting.
        Skeletal Radiol. 2014; 43: 1289-1295